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1 Introduction

This document is a compilation of my work this fall semester in MTH311: Ad-
vanced Calculus at University of Massachusetts Dartmouth. It covers my work
in disseminating and becoming comfortable with the foundation and basics of
real analysis, including construction of the sets of natural, rational, and real
numbers, limits, a discussion of irrationality, continuity, Cauchy sequences, and
sequences of functions. Each section typically contains a brief summary of the
material being studied, or an explanation of the axioms that I am using to solve
the problem at hand, followed by a few proof-based exercises related to the
topic. It is my hope that the proofs are easy to follow, serve to elucidate the
problems at hand, and represent my understanding of the topic.

2 Zermelo-Fraenkel Set Theory and the Set of
Natural Numbers

2.1 Background

Zermelo-Fraenkel Set Theory was created to avoid certain paradoxes that could
occur when working with sets, such as Russell’s Paradox - for sets that are not
members of themselves, if a property determines a set A, then A is a member
of itself if and only if A is not a member of itself. Thus, Zermelo and Fraenkel
created axioms to legitimize set theory [1].

From the axioms, Zermelo-Fraenkel Set Theory allows for the expression of
natural numbers from sets. The natural number 0 is expressed as the empty
set ∅, 1 is expressed as {∅}, 2 is expressed as ∅ ∪ {∅} or {∅, {∅}}, 3 is expressed
as ∅ ∪ {∅, {∅}} or {∅, {∅, {∅}}}, and so forth. This follows from the axiom that
w+ := w ∪ {w}, and it ”reifies” the process of unlimited counting through
the successor function, which for a natural number n is defined as n+. The
successor of a natural number is simply the union of the empty set with the
natural number itself

2.2 Addition

The Peano Axioms further explore the properties of the successor function for
the set of natural numbers N.

1. There is no natural number n with n+ = 0

2. For all natural numbers m,n, if m+ = n+ then m = n

3. If S ⊆ N has the properties 0 ∈ S and ifn ∈ Sthenn+inS then S = N

Thus, addition of natural numbers is a function mapping two natural numbers
to another, defined as follows:

1. m+ 0 = m for all m ∈ N
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2. m+ n+ = (m+ n)+ for all m,n ∈ N

For example, the simplistic 3 + 2 would be defined as follows:

3 + 2 = 3 + 1+ = (3 + 1)+

= (3 + 0+)+

= ((3 + 0)+)+

= ((3)+)+

(1)

Exercise: Argue why m+ n is defined for all m,n ∈ N.

We know that if n ∈ N, then n+ ∈ N from the Peano Axioms. Since m + n is
defined recursively, it will eventually reduce to a repeated number of successor
operations. Since if n is defined, then n+ must be defined, it must be true that
m+ n is defined for all m,n ∈ N.

Exercise: Prove that the binary addition operation is commutative.

We proceed with a proof by induction.

1. Base case: m+ 0 = 0 +m

2. m+ 0 = m as stated by the definition of the addition function.

3. To prove that 0 +m = m, proceed with another proof by induction.

(a) Base case: 0 + 0 = 0, as stated by the Peano Axioms

(b) Assume 0 + k = k is true

(c) It follows that 0 + k + 1 = 0 + k+ = (0 + k)+ = k+ by the definition
of the addition function.

(d) Therefore, 0 +m = m.

4. Therefore, because m+ 0 = m and 0 +m = m, then m+ 0 = 0 +m

5. Then, assume m+ k = k +m is true and prove that m+ k+ = k+ +m

6. Firstly, we demonstrate that m+ 1 = 1 +m

(a) Proceed with another proof by induction.

(b) Base case: 0 + 1 = (0 + 0)+ = 1 = 1 + 0 as stated in the Peano
Axioms

(c) Assume k + 1 = 1 + k

(d) It follows that (k + 1)+ = 1 + k+ by the definition of the addition
function.

(e) Therefore, m+ 1 = 1 +m

7. Finally, assume m+ k = k +mistrue

8. It follows that m+ k + 1 = k +m+ 1 = k + 1 +m
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9. Therefore, m+ n = n+m for all m,n ∈ N by the Principle of
Mathematical Induction.

Exercise: Prove that the binary addition operation is associative.

Proceed with a proof by induction. Since we know that addition is commutative,
m+ n = n+m for all m,n ∈ N.

1. Base case: Prove (m+ n) + 0 = m+ (n+ 0)

(a) (m+ n) + 0 = m+ n by the definition of the addition function

(b) m + (n + 0) = (n + 0) + m = n + m = m + n by the definitions of
addition and association

(c) Therefore (m+ n) + 0 = m+ (n+ 0)

2. Then, assume (m+ n) + k = m+ (n+ k)

3. (m+ n) + (k + 1) = (m+ n) + k+ = ((m+ n) + k)+ by the definition of
addition

4. In addition, ((m+n) +k)+ = (m+ (n+k))+ by the definition of addition

5. (m+ (n+ k))+ = m+ (n+ k)+ = m+ (n+ k+) = m+ (n+ (k + 1)) by
the definition of addition

6. Therefore, (m + n) + p = m + (n + p) by the Principle of Mathematical
Induction.

Exercise: Prove the cancellation property that m+ p = n+ p =⇒ m = n

Proceed with a proof by induction.

1. Base Case: if m + 0 = n + 0 then m = n. m + 0 = m and n + 0 = n by
the definition of the addition function, therefore m = n.

2. Assume that m+ k = n+ k =⇒ m = n.

3. Therefore, k can be canceled like so: m+k+1 = n+k+1 =⇒ m+1 = n+1

4. Furthermore, m+ 1 = m+ and n+ 1 = n+ so m+ = n+, meaning m = n
by the Peano Axioms.

5. Therefore m+k = n+k =⇒ m = n =⇒ m+k+1 = n+k+1 =⇒ m = n

6. Therefore, m + p = n + p =⇒ m = n by the Principle of Mathematical
Induction.

2.3 Multiplication

Multiplication on the set of natural numbers is also defined using the successor
function as follows:

1. m ∗ 0 = 0 for all m ∈ N
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2. m ∗ n+ = (m ∗ n) +m for all m,n ∈ N

Exercise: Argue why m ∗ n is defined for all m,n ∈ N.

We know that if n ∈ N, then n+ ∈ N from the Peano Axioms. Since m ∗ n is
defined recursively, it will eventually reduce to a repeated number of successor
operations. Since if n is defined, then n+ must be defined, it must be true that
m ∗ n is defined for all m,n ∈ N.

To proceed with certain proofs for multiplication, it is important to prove that
multiplication distributes over addition.

Lemma. Multiplication of natural numbers distributes over addition.
(m+ n) ∗ p = (m ∗ p) + (n ∗ p)

Proceed with a proof by induction.

1. Base Case: (m + n) ∗ 0 = 0 and (m ∗ 0) + (n ∗ 0) = 0 + 0 = 0 therefore
(m+ n) ∗ 0 = (m ∗ 0) + (n ∗ 0)

2. Assume that (m+ n) ∗ k = (m+ k) ∗ (n+ k)

3. It follows that (m+n)∗ (k+ 1) = ((m+n)∗k) + (m+n) = ((m∗k) + (n∗
k)) +m+ n by the definition of multiplication and induction hypothesis

4. Furthermore, ((m ∗ k) + (n ∗ k)) +m+n = ((m ∗ k) +m) + ((n ∗ k) +n) =
(m ∗ k+) + (n ∗ k+) by the commutativity and associativity of addition

5. Therefore (m+n) ∗ p = (m ∗ p) + (n ∗ p) by the Principle of Mathematical
Induction

This allows for the proofs in the following exercises.

Exercise: Prove that m ∗ 1 = m and 1 ∗m = m for all m ∈ N

Proceed with a proof by induction.

1. Base Case: 1 ∗ 0 = 0 by the definition of multiplication.

2. Assume 1 ∗ k = k = k ∗ 1

3. Induction step: Prove that 1 ∗ (k + 1) = k + 1 = (k + 1) ∗ 1

4. 1 ∗ (k + 1) = 1 ∗ k+ = (1 ∗ k) + 1 by the definition of multiplication

5. (1 ∗ k) + 1 = k + 1 by induction hypothesis

6. (k + 1) ∗ 1 = (1 ∗ k) + (1 ∗ 1) = k + 1 by distributive property proven
previously.

7. Thus 1 ∗ (k + 1) = k + 1 = (k + 1) ∗ 1

8. Therefore, m ∗ 1 = m and 1 ∗m = m for all m ∈ N by the Principle of
Mathematical Induction

Exercise: Prove that multiplication is commutative.
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Proceed with a proof by induction.

1. Base Case: Prove that m ∗ 0 = 0 ∗m for all m ∈ N by proceeding with
another proof by induction.

(a) Base Case: 0 ∗ 0 = 0 by multiplication

(b) Assume 0 ∗ k = 0

(c) It follows that 0 ∗ (k + 1) = 0 ∗ k+ = (0 ∗ k) + 0 = 0 + 0 = 0 by the
definition of multiplication and induction hypothesis.

(d) Therefore m ∗ 0 = 0 ∗m for all m ∈ N

2. Assume m ∗ k = k ∗m for all m ∈ N

3. It follows that m ∗ (k+ 1) = (m ∗ k) +m = m+ (k ∗m) by the definitions
of addition, multiplication, and the induction hypothesis.

4. m+ (k ∗m) = (k + 1) ∗m by the distributive property proven previously.

5. Therefore m∗n = n∗m for all m,n ∈ N by the Principle of Mathematical
Induction

Exercise: Prove that multiplication is associative.

Proceed with a proof by induction.

1. Base Case: (m ∗n) ∗ 0 = 0,m ∗ (n ∗ 0) = m ∗ 0 = 0, therefore (m ∗n) ∗ 0 =
m ∗ (n ∗ 0)

2. Assume (m ∗ n) ∗ k = m ∗ (n ∗ k)

3. It follows that (m∗n)∗(k+1) = ((m∗n)∗k)+(m∗n) = (m∗(n∗k))+(m∗n)
by the induction hypothesis and the distributive property.

4. (m ∗ (n ∗ k)) + (m ∗ n) = m ∗ ((n ∗ k) + n) = m ∗ (n ∗ (k + 1))

5. Therefore, (m∗n)∗p = m∗(n∗p) meaning that multiplication is associative
by the Principle of Mathematical Induction.

Exercise: Prove the cancellation property m ∗ p = n ∗ p =⇒ m = n for all
m,n, p ∈ N

Proceed with a proof by induction.

1. Base Case: let p = 1; m ∗ 1 = m and n ∗ 1 = n therefore m ∗ 1 = n ∗ 1 =⇒
m = n

2. Assume that m ∗ k = n ∗ k =⇒ m = n

3. Furthermore, assume m ∗ k+ = n ∗ k+

4. Then, m ∗ (k+ 1) = (m ∗ k) +m. Since n ∗ (k+ 1) = (n ∗ k) + n, we know
(m ∗ k) +m = (n ∗ k) + n.
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5. Since (m ∗ k) = (n ∗ k) by the induction hypothesis, both sides can be
cancelled by the cancellation property of addition. Therefore m = n

6. Thus m ∗ k+ = n ∗ k+ =⇒ m = n

7. Therefore m ∗ p = n ∗ p =⇒ m = n for all m,n, p ∈ N

2.4 From Natural Numbers to Integers

For further proofs, it is useful to extend the idea of natural numbers to integers,
to include negative counting numbers as well as a positive. Establishing the
integers is important for later investigations.

The integers can be represented as a group. A group is a set equipped with
a binary operation - for example, the set of natural numbers with addition,
(N,+). In a Grothendieck group, the operation is commutative and fulfulls
other general properties. The set of integers with addition can be constructed
as the Grothendieck group of (N,+). This group exists and represents the set of
integers because if an inverse of the addition operation must be defined, then the
result must be denoted as the inverse, in this case using the − negative notation.
In this group, the difference between natural numbers n−m is defined. Then,

∀n ∈ N :

{
n := [n− 0]

−n := [0− n]
(2)

This rule defines the set of integers Z.

3 The Field of Rational Numbers

3.1 Definition and Equivalence

A rational number is a number that can be expressed as a fraction in canonical
form. A fraction is an ordered pair of integers. The set of all integers Z is
defined from the set of natural numbers, a task which will be completed later,
so for now we focus on the set of positive rational numbers, which forms a field
as both addition and multiplication can be defined.

First, equality of fractions is defined as such: a
b ≡

c
d indicates ad = bc. Obvi-

ously, a
b ≡

a
b as ab = ab, and if a

b ≡
c
d then c

d ≡
a
b because ad = bc is the same

as ad = bc for all a, b, c, d ∈ N by the definition of =.

Furthermore, this relation is transitive. If a
b ≡

c
d and c

d ≡
e
f , then a

b ≡
e
f .

This is because a
b ≡

c
d =⇒ ad = bc thus c = ad

b , and c
d ≡

e
f =⇒ cf = de

thus c = de
f . Thus, de

f = ad
b and by the cancellation property of multiplication,

a
b = e

f . This, combined with the above two statements, makes the binary
relation ≡ an equivalence relation.
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In addition, we also know that in each equivalence class for ≡ there is a reduced
fraction a

b such that a, b only have the common factor 1. This is because, if we
assume a

b ≡
c
d such that c and d both have a common factor, then a

b can be
obtained from c

d by dividing both c and d by the GCD of c and d.

3.2 Addition

Addition of fractions is defined as a
b + c

d = ad+bc
bd

Exercise: Prove that addition of fractions respects the equivalence of
fractions; that is, prove that a

b ≡
p
q and c

d ≡
r
s =⇒ a

b + c
d = p

q + r
s

Direct Proof.

1. First, if a
b ≡

p
q then aq = bp thus a = bp

q by the definition of fraction
addition.

2. Second, if c
d ≡

r
s then cs = dr thus c = dr

s by the definition of fraction
addiion.

3. Thus a
b + c

d = ad+bc
bd =

bdp
q + bdr

s

bd which, through division and simplification
of the fraction, equates to p

q + r
s

4. Therefore a
b ≡

p
q and c

d ≡
r
s =⇒ a

b + c
d = p

q + r
s

3.3 Multiplication

Multiplication of fractions is defined as a
b ∗

c
d = ac

bd

Exercise: Prove that multiplication of fractions respects the equivalence of
fractions; that is, prove that a

b ≡
p
qand

c
d ≡

r
s =⇒ a

b ∗
c
d = p

q ∗
r
s

Direct Proof.

1. First, if a
b ≡

p
q then aq = bp thus a = bp

q by the definition of fraction
multiplication.

2. Second, if c
d ≡

r
s then cs = dr thus c = dr

s by the definition of fraction
multiplication.

3. Thus a
b ∗

c
d = ac

bd =
bp
q ∗

dr
s

bd =
bdpr
qs

bd which, through division and simplification
of the fraction, equates to pr

qs

4. Furthermore, pq ∗
r
s = pr

qs by the definition of fraction multiplication.

5. Therefore a
b ≡

p
qand

c
d ≡

r
s =⇒ a

b ∗
c
d = p

q ∗
r
s

3.4 Order

Like the natural numbers, the rational numbers are also ordered. For all a
b in

canonical form, a
b <

c
d implies that ad < bc. There are several properties that

make the set of rational numbers an ordered field. Many, such as commutativity
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and associativity of addition and multiplication operations, are similar to the
natural numbers which were proven previously. Thus, four proof exercises will
be presented here for new properties.

Exercise: Prove that for all 0 6= r ∈ Q there exists r∗ ∈ Q such that r ∗ r∗ = 1

Proceed with direct proof.

1. if r, r∗ ∈ Q then r = a
b and r∗ = c

d

2. Let r∗ = b
a . Then r ∗ r∗ = a

b ∗
b
a = ab

ab = 1

Exercise: Prove that for all r 6= s ∈ Q, r < sorr > s

Proceed with a proof by contrapositive.

1. Assume r ≮ s. Then r > sorr = s.

2. Then assume r ≯ s. Then r < sorr = s

3. Since we know r ≮ s and r ≯ s, r = s

Exercise: Prove that if r < s then r + t < s+ t for r, s, t ∈ Q.

Proceed via direct proof.

1. Let r = a
b , s = c

d , t = e
f

2. Assume r < s thus ad < bc

3. r + t = af+be
bf while s+ t = cf+de

df

4. Therefore since af+be
bf < cf+de

df , then (af + be)(df) < (cf + de)(bf)

5. This simplies to ad < bc, which implies r < s

Exercise: Prove that for all r, s ∈ Q, if r > 0 and s > 0 then r ∗ s > 0.

Proceed with a direct proof.

1. If r > 0 then r = a
b with a, b > 0

2. If s > 0 then r = c
d with c, d > 0

3. r ∗ s = a
b ∗

c
d = ab

cd

4. For ab
cd = 0, a = 0 or c = 0 but we know this is not true.

5. Therefore for all r, s ∈ Q, if r > 0 and s > 0 then r ∗ s > 0

Archimedean ordering property: For every r ∈ Q there is a natural number n
for which n > r.

Proof: Proceed with a proof by cases.

1. Since r is a rational number, r = a
b with a, b ∈ N

2. Case 1: b = 1
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(a) If b = 1, then r = a and r ∈ Z

(b) Since b ∈ mathbbZ, there exists b+ 1 ∈ N such that b+ 1 > b = r

(c) Therefore, when r = a
b and b = 1, there exists a natural number

n > r

3. Case 2: b 6= 1

(a) On one hand, if r = a
b , b > 1, and a > 0 there exists a rational

number n = a
1 with a, b ∈ Z meaning that n > r.

(b) On the other hand, if r = a
b , b > 1, and a < 0 there exists a rational

number n = a
−1 with a, b ∈ Z meaning that n > r.

(c) Since in either case n = a
1 , n = a meaning that n ∈ N

(d) Therefore, when r = a
b and b > 1, there exists a natural number

n > r

4. Since there exists a natural number n > r for every rational number r = a
b

when b = 1, b > 1, and b < 1

4 Limits

Limits allow for exploration of long-term behaviors - for the rational numbers,
it allows us to examine what happens when a sequence continues on infinitely.
A sequence of rational numbers is a function that maps each natural number
to a rational number; since N is countably infinite, the set of the terms of the
sequence is also countably infinite.

For instance, for the sake of exercises, we can define the sequence p(n) like so:

p(1) = 1;

p(n) = 1− 1
2p(n− 1) for all n ≥ 2;

Exercise: Prove that p(n) is rational

Proceed with a proof by induction

1. Base Case: Since p(1) = 1, p(1) is rational.

2. Assume p(k) = 1− 1
2p(k − 1) is rational

3. p(k + 1) = 1− 1
2p(k), and since p(k) is rational by the induction hypoth-

esis, 1− 1
2p(k) must be rational since two rational numbers multiplied or

subtracted equal a rational number.

4. Therefore p(n) is rational by the Principle of Mathematical Induction.

Exercise: Plot p(n) versus n for 1 ≤ n ≤ 20
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Exercise: With ε(n) := p(n)− 2
3 find a recurrence relation for ε(n)

ε(n) = p(n)− 2

3

= 1− 1

2
p(n− 1)− 2

3

=
1

3
− 1

2
p(n− 1)

= −1

2
(p(n− 1)− 2

3
)

= −1

2
ε(n− 1)

Exercise: Show that ε(n)→ 0 as n→∞

We can prove that ε(n) → 0 as n → ∞ by showing that the absolute value of
the function is non-increasing; at each step, ε gets close to 0.

Prove that |ε(n)| < |ε(n− 1)|

1. By the recurrence relation, |ε(n)| = | − 1
2ε(n− 1)|

2. ε(1) = p(1)− 2
3 = 1

3

3. At each step of the sequence, the previous value is just multiplied by 1
2 .

Therefore we can write |ε(n)| = ( 1
3 )( 1

2 )n

4. We know that as n increases, ( 1
2 )n approaches 0, because ( 1

2 )n+1 = 1
2 ( 1

2 )n <
1
2

n
.

5. Therefore ε(n)→ 0 as n→∞
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5 Irrationality

An irrational number is a number that cannot be written as a ratio a
b with

a, b ∈ Z. A famous example, known to the Ancient Greeks, is
√

2, which the
Pythagoreans argued was not commensurable with the unit 1 since there exist
no whole numbers m and n such that n ∗ l = m ∗ 1 = m. There are many
ways to prove that

√
2 is irrational; some involve contradiction, while others are

constructive (and therefore more rigorous for those who do not believe that a
statement can only be true or false).

5.1 Proving a number is irrational

Below we demonstrate that other numbers are irrational using similar techniques
that are used to prove that

√
2 is irrational:

Exercise: Prove that
√

5 is irrational.

Proceed with a proof by contradiction.

1. Assume that for l where l2 = 5, there exist m,n ∈ N such that n ∗ l =
m ∗ 1 = m.

2. Let n be the smallest natural number for which nl is an integer.

3. Let n∗ = n(l − 2). Then n∗ = n(l − 2) = nl − 2n = m− 2n is an integer.

4. If l ≤ 2 then l2 ≤ 22 = 4, however l2 = 5 > 4, therefore l > 2

5. As such, n∗ = n(l − 2) > 1 so n∗ is a natural number.

6. n ∗ l = n(l − 2)l = nl2 − 2nl = 5n− 2m ∈ N.

7. n∗ is a natural number such that n ∗ l is an integer.

8. However, if l − 2 ≥ 1 then l ≥ 3sol2 ≥ 9 > 5, therefore l − 2 < 1.

9. Therefore, n∗ < n because n∗ = n(l − 2) < n ∗ 1.

10. This forms a contradiction as we already assumed n is the smallest natural
number such that nl is an integer. Thus

√
5 must be irrational.

Note that this proof works for any irrational square root, if in Step 3 you let
n∗ = n(l−k) where k2 is the largest square number less than the number whose
square is being proven irrational, and adjust the rest of the proof accordingly.
No contradiction is formed when l is rational, because then one would find in
Step 9 that n∗ = n as n∗ = n(l − k) = n ∗ 1, so there is no contradiction.

Exercise: Prove that 21/3 is irrational.

Proceed with a proof by contradiction.

1. Assume l = a
b such that a, b ∈ N and GCD(a, b) = 1.

13



2. Then 2 = l3 = a3

b3 so a3 = 2b3. Since a3 is even, a must be even, s a = 2m
for some m ∈ N.

3. Then 2b3 = a3 = 8m3 so b3 = 4m3. Thus b3 is even and therefore b is
even and b = 2n for some n ∈ N.

4. However, if both a and b are even, then GCD(a, b) >= 2, contradicting
the original assumption that GCD(a, b) = 1

Exercise: Show that log10 5 is not a rational number (Challenge: Using a
constructive proof)

Proceed with a proof by cases. Let l = log10 5 Case 1: l + a
b > 2

1. a
b − l > 2− 2l through algebraic manipulation

2. a
b − l > 2− 2l > 0 since l < 1 as log10 5 < log1010 = 1

3. Thus, l 6= a
b when l + a

b > 2

Case 2: l + a
b ≤ 2

1. 10
a
n+l < 102 = 100

2. Therefore 10
a
n−l < 100

102l
through logarithm properties

3. This implies that 10
a
n−l < 4 through logarithm properties.

4. Hence a
b − l > 0 since 100 = 1.

5. Thus 2l < a
b + l < 2 as a

b + l 6= 2 since l < 1

6. Therefore l 6= a
b as l < a

b

5.2 The Babylonian Method for Approximating
√
2

Thousands of years ago, the Babylonians invented an iterative method for ap-
proximating the value of

√
2 that gets closer and closer to the actual value the

more iterations are performed. Though it never reaches the exact value, since√
2 is irrational, it is an example of a series whose limit approaches an irrational

number. The method is outlined below:

x1 =
3

3

xn+1 =
xn
2

+
1

xn
,∀n ≥ 1

Exercise: Prove that |x2n − 2| approaches 0 as n increases

We do this by proving that |x2n+1−2| < |x2n−2| for all n ≥ 1. This is analogous
to proving that the error is monotonically decreasing to 0. Proceed with a proof
by induction.
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1. Base Case: xn = 3
2 , xn+1 =

3
2

2 + 1
3
2

= 17
12 <

18
12 = 3

2 therefore x2 < x1

2. Induction Hypothesis: Assume |x2k − 2| < |x2k−1 − 2|

3. Induction Step: Prove that |x2k+1 − 2| < |x2k − 2|

(a) By substituting in xn+1 = xn

2 + 1
xn

and solving algebraically, we find

that |x2k+1 − 2| = (x2
k−2)

2

4x2
k

(b) Then, we prove that x2k > 2 for all k ≥ 1 by using another proof by
induction

i. Base Case: x21 = ( 3
2 )2 = 9

4 >
8
4 = 2

ii. Induction Hypothesis: Assume x2k > 2

iii. Induction Step: Prove that x2k+1 > 2

A. x2k+1 =
x2
k

4 + 1
x2
k

+ 1 by algebraic manipulation.

B.
x2
k

4 + 1
x2
k

+ 1 > 2 if and only if x4k > 4 − 4x2k by algebraic

manipulation

C. Let z = x2k. It is known that z2 increases more rapidly than
z, and that 22 = 4 ∗ 2 − 4 = 4 is true. Since z2 > 4 − z for
all z > 2, then since x2k > 2, it is true that x4k > 4− 4x2k.

D. Thus it follows that
x2
k

4 + 1
k2n

+ 1 > 2 therefore x2k+1 > 2

iv. Because x21 > 2 and x2k > 2 =⇒ x2k+1 > 2, x2k > 2 for all n ≥ 1
by the Principle of Mathematical Induction

(c) Since x2k > 2, it follows that |x2k+1 − 2| =
(x2

k−2)
2

4x2
k

<
(x2

k−2)
2

8 <

(x2
k−1−2)

2

8 = |x2k − 2|

(d) As such, |x2k − 2| < |x2k−1 − 2| =⇒ |x2k+1 − 2| < |x2k − 2|

4. Therefore, |x2n+1 − 2| < |x2n − 2| for all n ≥ 1 by the Principle of Mathe-
matical Induction.

The square-root of 2 can also be thought of as an ”infinitely long fraction” or a
”continued fraction.” If we write x =

√
2 + 1, we can algebraically manipulate x

to get 2 + 1
x , and keep substituting x with no end. Approximating this fraction

allows us to obtain a sequence of rational numbers that convergences to
√

2.

Since in class we have been discussing the concept of mathematics as the com-
munication of ”ideas,” and how all proofs should start as concepts, I have at-
tempted to write the proofs in this section concisely, boiling down the proof to
its main idea(s), rather than writing extremely detailed steps for solving the
problem at hand.
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Exercise: Prove that if the nth convergent of the infinite fraction is pn
qn

then

the next convergent is pn+1

qn+1
= pn+2qn

pn+qn

pn+1

qn+1
approximates

√
2, while the infinite fraction approximates

√
2 + 1. If we

let each iterate of the infinite fraction be represented as Sn, then we know
Sn = pn

qn
+ 1 and Sn+1 = pn+1

qn+1
+ 1.

Sn+1 = 2+ 1
Sn

therefore pn+1

qn+1
+1 = 2+ 1

pn
qn

+1
. Through algebraic manipulation,

we find that pn+1

qn+1
= 1 + 1

pn+qn
qn

= 2qn+pn
pn+qn

.

Therefore, if the nth convergent of the infinite fraction is pn
qn

then the next

convergent is pn+1

qn+1
= pn+2qn

pn+qn

Exercise: Prove that if p
q is rational then p+2q

p+q is rational.

Let p = a
b with GCD(a, b) = 1 and q = c

d with GCD(c, d) = 1 and a, b, c, d ∈ Z.

Then p+2q
p+q =

a
b +

2c
d

a
b +

c
d

=
ad+2bc

bd
ad+bc

bd

= ad+2bc
ad+bc which is rational as a, b, c, d ∈ Z.

Therefore if p
q is rational then p+2q

p+q is rational.

Exercise: Prove that if an = p2n−1

q2n−1
and bn = p2n

q2n
, then an ≤ an+1 ≤ bn ≤ bn+1

In general, for a, b ∈ N, we know a
b ≤

a+2b
a+b when a, b both positive, because

2b > b for all b ≤ 1.

Since an+1 = p2n
q2n

= p2n−1+2q2n−1

p2n−1+q2n−1
< p2n−1

q2n−1
= an. Furthermore, this argument

can be extended without loss of generality to all other cases to prove an ≤
an+1 ≤ bn ≤ bn+1.

Exercise: Prove that bn − an → 0 as n→∞

Since bn and an represent the even and odd iterates of the approximation,
respectively, then we can write bn = an + ε, where ε represents the additional
fraction added at the next iteration. We know that limn→∞ ε = 0 from the
nature of the continued fraction, therefore bn − an = 0

Exercise: Prove that a2n < 2 < b2n as n→∞.

1. We know that a1 = 1 and b1 = 3
2 . Therefore a21 = 1 < 2 and b21 = 9

4 > 2.

2. Since an and bn are rational numbers, and b2n = (1 + 1
an

)2 = 1 + 2
an

+ 1
a2n

,

we know that all b2n > 2.

3. We also know from the previous exercises that an ≤ an+1 ≤ bn ≤ bn+1,
hence an is monotonically increasing and bn is monotonically decreasing.

4. From another previous exercise, we know that as n approaches infinity,
an = bn hence a2n = b2n. Therefore a2n < 2 < b2n as n→∞
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6 Properties of Real Numbers from Lebl’s Basic
Analysis

6.1 Preliminaries

In this section, I stray from the material of the lectures and take an inde-
pendent dive into some properties of real numbers using one of the resources
recommended for this class - Lebl’s Basic Analysis. This will help me better
understand the numbers that form the foundation of real analysis.

It seems, to define the set of real numbers, it is important to understand certain
properties of sets. From [2], an ordered set is a set such that for any pair of
elements x, y, one of the following relations holds: x < y, x = y, x > y. These
relations must also have the transitive property. From our previous work, we
already know thatQ and Z are ordered sets. Furthermore, these two sets are also
ordered fields, as addition and multiplication are defined, x < y =⇒ x + z <
y + z, and x > 0, y > 0 =⇒ xy > 0.

Furthermore, if S is an ordered set and E ⊂ S, then E is bounded with a
bound of b if b ∈ S such that b ≥ x (for upper bound) or b ≤ x (for lower
bound) for all x ∈ E. It follows that the ”least upper bound” is the bound
b0 that is the smallest such b that forms an upper bound of the set, and the
”greatest lower bound” is the b that is the largest such b that forms a lower
bound of the set. A set has the ”least upper bound property” or ”completeness
property” if every nonempty subset E ⊂ S that is bounded above has a least
upper bound that is in S. From [2], there exists a unique ordered field R with the
least-upper-bound property such that Q ∈ R. Since we know, from the least-
upper-bound property and from our previous investigations, that R contains
many other numbers besides the rationals, we can define R − Q as the set of
irrational numbers.

The reason that analysts use the set of real numbers is precisely because of
its least-upper-bound property. Q does not have this property, which makes
analysis impossible in many cases.

Analysts prove inequalities using the subsequent proposition from [2]: If x ∈ R
such that x ≤ ε for all ε ∈ R where ε > 0, then x ≤ 0.

1. We know that if x > 0, then 0 < x
2 . This is because dividing a positive

integer by a positive integer yields a positive rational number, and because
dividing a rational number by a positive integer yields a smaller rational
number.

2. If we let ε = x
2 , then ε < x, which is a contradiction. Therefore x ≤ 0.

6.2 The Archimedean Property

There are infinitely many rational numbers in any interval on the real number
line. This comes from a theorem from [2]:
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1. Archimedean property: If x, y ∈ R and x > 0 then ∃n ∈ N such that
nx > y.

2. Q dense in R: If x, y ∈ R ad x < y, then ∃r ∈ Q such that x < r < y.

But how can we prove these two facts? Here are my interpretations from [2]

Problem: Prove the Archimedean Property

For nx > y to be true for all x, y ∈ R, N must not be bounded. We already
know that N is not bounded. This is because for any n ∈ N, there exists n+ ∈ N
which is greater than n.

Suppose N were bounded by some least-upper-bound b; then if we let m ∈ N
be a number in b − 1 < m < b, then m + 1 > b and m + 1 ∈ N as well by the
definition of the set of natural numbers, meaning that b is not the least-upper-
bound which causes a contradiction. Therefore the Archimedean property must
be true.

Problem: Prove that Q is dense in R.

To prove this, let us construct r ∈ Q such that x < r < y. Since x 6= y, we know
that there must be some n ∈ N such that n(y − x) > 1 by the Archimedean
Property, so ny > 1 + nx. We also know by the Archimedean Property that
nx < m for some rational number m.

Let m be the smallest element such that nx < m. Since m − 1 is smaller than
m, this means that m − 1 ≤ nx (note m 6= 0 because n ∈ N). Therefore
ny > 1 + nx ≥ m, so y > m

n which is a rational number. Thus x < m
n < y

indicating that Q dense in R.

7 Continuity

7.1 Proving Continuity of a Function

Continuity of a function is an important aspect of many proofs in mathematics
- but how can we define ”continuity” in a rigorous manner? To do this, we use
an ”delta-epsilon” argument or proof. To check that a function f is continuous,
we examine whether there exists δ > 0 such that |x − x0| implies that |f(x) −
f(x0)| < ε for every ε > 0. For now, we will work with functions that are defined
on the set of rational numbers, meaning that δ, ε, x, x0 ∈ Q and the function f
maps Q → Q. Essentially, we show that f(x) and f(x0) are close if x and x0
are close enough.

Exercise: Prove that f(x) = ab+ b is continuous, given a, b ∈ Q.

To test for continuity, we test that ∃δ ∈ Q and 0 < δ such that |x−x0| < δ =⇒
|f(x)− f(x0)| < ε with 0 < ε ∈ Q.

1. It is known that |f(x)− f(x0)| = |ax+ b− ax0 − b| = a|x− x0|.
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2. If we let δ = ε
a , then |x − x0| < δ =⇒ a|x − x0| < ε since a|x − x0| <

aδ = a εa = ε since a is a constant.

3. Therefore ax+ b is continuous at all x ∈ Q

Exercise: Prove that f(x) = x2 is continuous on the set of rational numbers.

We proceed with a delta-epsilon proof.

1. |f(x)− f(x0)| = |x2 − x20| = |x− x0||x+ x0|.

2. Furthermore, we can extract |x− x0| from |x+ x0| through the following
equality: |x+ x0| = |x− x0 + 2x0|

3. Let δ = min( ε
|1+2x0| , 1).

4. Then |x− x0 + 2x0| ≤ |x− x0|+ |2x0| < 1 + 2|x0|.

5. Therefore |x2−x20| = |x−x0||x+x0| < (1+2|x0|)|x−x0| < (1+2|x0|)δ < ε

6. Thus f(x) = x2 is continuous on the set of rational numbers.

A similar argument can be used to prove the continuity of other polynomials.

Exercise: Prove that f(x) = x2 + x is continuous on the set of rational
numbers.

We proceed with a delta-epsilon proof.

1. |f(x)− f(x0)| = |x2 + x− x20 − x0| = |x− x0||x+ x0 + 1|

2. Let x0 ∈ Q and for ε > 0 ∈ Q let δ = min( ε
1+|2x0+1| , 1).

3. |x+ x0 + 1| = |x− x0 + 2x0 + 1| = |x− x0|+ |2x0 + 1|

4. If |x− x+ 0| < δ then |x− x0| < 1 so |x+ x0 + 1| < 1 + |2x0 + 1|.

5. Then |f(x) − f(x0)| = |x − x0||x + x0 + 1| < |x − x0|(1 + |2x0 + 1| <
δ(1 + |2x0 + 1|) < ε

6. Therefore f(x) = x2 + x is continuous on the set of rational numbers.

Exercise: Prove that f(x) = x3 is continuous on the set of rational numbers.

We proceed with a delta-epsilon proof.

1. |f(x)− f(x0)| = |x3 − x30| = |x− x0||x2 + xx0 + x20|.

2. Furthermore, |x2 + xx0 + x20| = |x(x+ x0) + x20| = |x||x− x0 + 2x0|+ |x20|

3. Let δ = min( ε
|x||1+2x0|+|x2

0|
, 1)

4. Then |x||x− x0 + 2x0|+ |x20| < |x||1 + 2x0|+ |x20|.

5. Therefore |x− x0||x2 + xx0 + x20| < (|x||1 + 2x0|+ |x20|)δ < ε

6. Thus f(x) = x3 is continuous on the set of rational numbers.
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7.2 Undesirable Behavior in Q
Unfortunately, when working with functions that map Q → Q, the functions
do not always exhibit behavior that is desirable for real analysis. For example,
the intermediate value theorem from calculus does not always hold true for the
rationals, since continuous functions on the rational numbers do not necessarily
take on all intermediate values in an interval. Furthermore, such functions do
not necessarily take on maximum or minimum values on closed rational intervals
either.

Exercise: For the function f(x) = x2 − 2 for x ∈ Q, show that
f(x) ∈ Q∀x ∈ Q and f(1) < 0 and f(2) > 0. Then show that f(x) is
continuous, and that there exists no x ∈ Q for which 1 ≤ x ≤ 2 and f(x) = 0.

First, we show f(x) ∈ Q∀x ∈ Q and f(1) < 0 and f(2) > 0.

1. f(x) = x ∗x− 2 = a∗a
b∗b −

2(b∗b)
b∗b with a, b ∈ Z by the definition of a rational

number.

2. Therefore f(x) = a2−2b2
b2

3. The value of this expression is rational, because a2 − 2b2 ∈ Z and b2 ∈ Z,
therefore f(x) is rational.

4. f(1) = 12 − 2 = −1 < 0

5. f(2) = 22 − 2 = 2 > 0

Then, we show f(x) is continuous. It is known that |f(x) − f(x0| = |x2 − 2 −
x20 + 2| = |x2−x20| = |x−x0||x−x0| which was already proven to be continuous
in the previous exercise for f(x) = x2. Therefore x2 − 2 is continuous.

Finally, if f(x) = x2 − 2 = 0, then x2 = 2. In our previous investigations, we
have already proven that

√
2 is irrational, but we have also proven that f(x)

only takes on rational values. Therefore, there exists no rational value where
f(x) = 0. Since f(x) crosses the x-axis in the interval 1 ≤ x ≤ 2 due to the fact
that f(1) = 12−2 = −1 < 0, f(2) = 22−2 = 2 > 0, and f(x) is continuous and
only takes on rational values, we have demonstrated that continuous functions
in Q do not necessarily take on all intermediate values in an interval.

Exercise: For the function f(x) = 1
x2−2 for x ∈ Q, show that

f(x) ∈ Q∀x ∈ Q. Then show that f(x) is continuous, and that the function
takes on no maximum or minimum values for x ∈ Q.

First, we demonstrate that f(x) ∈ Q.

1. If x ∈ Q then x = a
b with a, b ∈ Z and GCD(a, b) = 1.

2. Then, f(x) = 1
( a
b )

2−2 = 1
a2−2b2

b2

= b2

a2−2b2 . Since b2 ∈ Z and a2 − 2b2 ∈ Z,

f(x) ∈ Q.
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Next, we show that f(x) is continuous using a similar delta-epsilon argument
to those we have been using previously.

1. We know that if f(x) is continuous then 1
f(x) is continuous provided f(x) 6=

0.

(a) | 1y −
1
y0
| = |y−y0yy0

| = | y−y0
(yy0−y20+y20)

| = | y−y0
(yy0−y20+y20)

| = | y−y0
(y0(y−y0)+y20)

|

(b) Let δ = min(ε(y20 − y0), 1). Thus |y − y0| < 1 =⇒ −1 < y − y0 < 1.
Therefore y − y0 > −1

(c) Then we can write | y−y0
(y0(y−y0)+y20)

| < | y−y0
(y20−y0)

| < | ε(y
2
0−y0

(y20−y0)
| = ε since

x− x0 < δ.

(d) Therefore, 1
y is continuous.

2. Since f(x) is defined only on the rationals, then f(x) 6= 0 because that
would require x =

√
2 and we already know

√
2 is irrational.

3. We know x2− 2 is continuous because |f(x)− f(x0)| = |x2− 2−x20 + 2| =
|x2 − x20| which is identical to the continuity proof of x2 and we know x2

is continuous.

4. Therefore f(x) is continuous.

Now, to show that f(x) takes on no maximum or minimum values, we can
prove that the range of f(x) is (−∞,∞). If we observe a graph of the function
in Figure 1, we see that the function has an asymptote at x =

√
2. As x2 → 2

from the left, f(x)→ −∞, and s x2 → 2 from the right, f(x)→∞.

To prove this, we can use a proof by contradiction. Assume f(x) does have a
minimum, and let x1 be the x-value which minimizes f(x) on the interval 1 <

x < 2. Then, we define as x2 = 1 +
x2
1

2 . If x1 < 2 then f(x2) = 1
x4
1+x

2
1−1

< 1
x2
1−2

when x > 1. However, this violates our assumption that x1 is the minimum.
Thus we demonstrate that there is always a smaller value that can be chosen
for the x at which f(x) attain its minimum. The same argument can be used
to prove the maximum, but when x > 2 is approaching from the right.

Figure 1: Graph of f(x) = 1
x2−2
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8 Further Investigation into Limits

8.1 Delta-Epsilon Arguments

Consider a function that maps some subset of Q to Q.

Then, for a fixed a ∈ Q, we can define the limit of f(x) as x → a as L,
which is written as lim

x→a
f(x) = L, if ∀ε > 0 ∈ Q,∃δ > 0 ∈ Q such that

|x−a| < delta =⇒ |f(x)−L| < ε. The function does not need to be defined at
a to approach some limit as it approaches a. Since the limit is defined in such a
way, we can prove limits of functions using delta-epsilon arguments, similar to
continuity.

An example of a proof of a limit is as follows:

Exercise: Prove that lim
x→2

x2 − 4

x2 − 3x+ 2
= 4.

Proceed with a delta-epsilon argument.

1. We must prove that ∃δ < 0 such that |x− 2| < δ =⇒ |f(x)− 4| < ε.

2. Through algebraic it is deduced that |f(x) − 4| = | (x−2)(x+2)
(x−2)(x+1) − 4| =

| (x−2)+4)
(x−2)+1 − 4|

3. Let δ = min( 1
2 ,

ε
2 − 2)

4. |x− 2| < 1
2 =⇒ −1

2 < x− 2 < 1
2 =⇒ 1

2 < x− 2 + 1 < 3
2 .

5. Therefore | (x−2)+4
(x−2)+1 − 4| < |2(x− 2) + 4| < ε

6. As such, lim
x→2

x2 − 4

x2 − 3x+ 2
= 4

8.2 Problem-Solving with Limits

Next, I include an in-depth description of how I proceeded to complete another
example of a limit proof. In class, we continued to discuss problem-solving
techniques for proof-writing. Here, I have written down my train of thought
and the steps that I took to solve the problem and develop the proof. This
description includes errors that I made in the exercise, and the process I took
to correct them.

Exercise: Prove that lim
x→8

x+ 4

x2 − 10x+ 10
= −2.

In order to prove the definition of a limit with sufficiently rigorous reasoning,
we must used a delta-epsilon argument. This argument is structured as follows:
Show that |x− a| < δ =⇒ |f(x)−L| < ε for δ > 0 for all ε > 0 with δ, ε in the
set of numbers that you are using for the problem.
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In this case we must prove |x− 8| < δ =⇒ | x+4
x2−10x+10 − (−2)| < ε. I’ll assume

we are operating in the real numbers even though we technically haven’t got
there yet in class.

So, the only pieces of information I have available are |x−8| < δ and | x+4
x2−10x+10−

(−2)| < ε.

After reading the proofs of continuity of rational functions from the previous
section, and observing that these are essentially the same type of argument, I
can use a similar strategy to solve the problem. So, the goal is to algebraically
manipulate | x+4

x2−10x+10−(−2)| to allow us to substitute in the inequality |x−8| <
δ to bound the expression below ε. By making it clear exactly how δ will be
substituted, we can strategically choose a delta that will essentially cancel all
of the terms and be equal to epsilon.

So, let’s begin with the algebraic manipulation. The goal is to extract (x − 8)
from | x+4

x2−10x+10 − (−2)|.

| x+ 4

x2 − 10x+ 10
− (−2)| =

| (x− 8) + 12

x2 − 10x+ 25− 15
+ 2| =

| (x− 8) + 12

(x− 5)(x− 5)− 15
+ 2| =

| (x− 8) + 12

((x− 8) + 3)((x− 8) + 3)− 15
+ 2|

So now we have |f(x) − L| written in terms of |x − a|. Next, I want to pick a
delta such that the expression reduces to ε. Previous proofs have used a ”min”
function to great effect, so I’ll start with that. Let δ = min(some constant, some
expression with ε)

I’ll start with the constant, which can be used to eliminate all but one of the
(x − 8) terms in the expression; I want to leave one term to substitute in the
expression with the epsilon. I see (x− 8) + 3 in the denominator, which should
be eliminated (since its a denominator). I now realize that in order to bound
this function and prevent it from growing to infinity, the denominator needs to
be greater than 0, so a simple solution is (x− 8) + 3 >= 4 or x− 8 >= 1. Thus
I need to figure out how to put a lower bound on x− 8 to solve the problem.

Unfortunately I realized that this is not possible because our expression is |x−
8| < δ, or −δ < x − 8 < δ so we cannot bound the expression |x − 8| from
below at a positive number. The only way to do that is to start with a different
expression and algebraically manipulate it. So I will decide to go back to working

with | (x−8)+12
(x−5)(x−5)−15 + 2| instead of | (x−8)+12

((x−8)+3)((x−8)+3)−15 + 2| I observe that I

can algebraically manipulate x− 5 into x− 8 by adding 3, so if I want the final
lower bound to be 4, the lower bound on x− 8 needs to be positive anyways.
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Or does it? Here is where I got stuck for awhile, but I experimented with differ-
ent possible solutions to trying to bound the denominator, reaching several dead
ends. After a large amount of fiddling about with algebra and experimenting
with various bounds, I realize that, I can set an upper bound and ensure that
the denominator is always negative to prevent it from going towards 0. If I let
|x − 8| < 1

2 then − 1
2 < x − 8 < 1

2 =⇒ 5
2 < x − 5 < 7

2 . The square of both of
these values is less than 15, so we know that this bound serves to prevent large
values of |f(x)−8|. Let the constant in the expression for δ by 1

2 . Then we find
that ((x − 8) + 3)((x − 8) + 3) < 49

4 , and further algebra on the denominator
yields the inequality 11

4 < |(x+ 8− 3)2 − 15| < 35
4 .

Therefore | (x−8)+12
((x−8)+3)((x−8)+3)−15 + 2| < | 4(x−8)+70)

11 |

Now we need to find an expression containing ε that can be substituted for
(x− 8) to make this expression equal to epsilon.

Solve algebraically:

|4(x− 8) + 70)

11
| = ε =⇒

4|x− 8| = 11(ε)− 70 =⇒

|x− 8| = 11ε− 70

4

So we find δ = min( 1
2 ,

11ε−70
4 ).

Then we can complete the delta-epsilon argument by stating that the full proof,
which is essentially what I have written here but organized into sequential steps,
starting with assuming δ to be what we solved for here.

The final proof is written as a list of steps that reflects the refined course of
logical reasoning to prove the limit:

1. We know that |f(x) − 2| = | x+4
x2−10x+10 − (−2)| = | (x−8)+12

x2−10x+25−15 + 2| =

| (x−8)+12
(x−5)(x−5)−15 + 2| = | (x−8)+12

((x−8)+3)((x−8)+3)−15 + 2|

2. Let δ = min( 1
2 ,

5(ε−2)−12
2 ).

3. It follows that |x − 8| < 1
2 =⇒ − 1

2 < x − 8 < 1
2 =⇒ 5

2 < x − 8 + 3 <
7
2 =⇒ −35

4 < (x+ 8− 3)2− 15 < − 11
4 =⇒ 11

4 < |(x+ 8− 3)2− 15| < 35
4

4. Therefore | (x−8)+12
(x−5)(x−5)−15 + 2| < | (x−8)+12

11
4

+ 2| = | 4(x−8)+70
11 | < ε

5. Thus lim
x→8

x+ 4

x2 − 10x+ 10
= −2
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9 Cauchy Sequences

A Cauchy sequence is a sequence x : N → Q such that ∀ε > 0,∃N ∈ N such
that |x(n+ p)− x(n) < ε∀n > N and ∀p ≥ 1¿ In layman’s terms, the difference
between a term and another term that comes after the first is arbitrarily small
if the sequence goes out far enough.

One of the useful aspects of a Cauchy sequence is that it provides a way for
use to concretely define the set of all real numbers R, so we do not have to rely
upon all of the assumptions from Section 6. A real number is simply the limit
of a Cauchy sequence of rational numbers; a Cauchy sequence that converges to
some limit does not necessarily have any other way to describe the number to
which it converges, so we call this number ”real.”

Exercise: Prove that the sequence x(1) = 1, x(n) = 1 + 1
1+x(n) is a Cauchy

sequence.

First, we will prove the case for n + 1. Define ε(n) = |x(n + 1) − x(n) =

|1 + 1
1+x(n) | = |

2−x(n)2
x(n)+1 through algebraic manipulation. Then it is known that

ε(n+ 1) = |1 +
1

1 + x(n+ 1)
− x(n+ 1)|

= |1 +
1

1 + 1 + 1
1+x(n)

− 1− 1

1 + x(n)
|

= | 1 + x(n)

3 + 2x(n)
− 1

1 + x(n)

= | x(n)2 − 2

(3 + 2x(n))(1 + x(n))
|

= |2− x(n)2

x(n+ 1)
|| 1

3 + 2x(n)
|

We know that x(1) = 1 and the sequence is increasing therefore 1
3+2x(n) <

1
5 .

As such, ε(n+ 1) < ε(n)
5 = 1

5n

Then, we can use the telescopic sum technique to write

|x(n+ p)− x(n)| = |x(n+ p)− x(n+ p− 1)|+ |x(n+ p− 1)− x(n+ p− 2)|+
...+ |x(n+ 1)− x(n)|

<
1

5n+p
+

1

5n+p−1
+ ...+

1

5n

=
1

5n
(

1

5p + 1
5p−1 + ...+ 1

)

<
1

5n
∗ 5 =

1

5n−1

So, given ε > 0 we take N large enough such that 1
5N−1 < ε and this ensures

that |x(n+p)−x(n)| < ε for all n > N and p ≥ 1, making x a Cauchy sequence.
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Going further, we can also demonstrate that if a sequence is a Cauchy sequence,
then that sequence is bounded, meaning that there exists c > 0 such that
|x(n)| ≥ C for all n ≥ 1.

One way to do this is a proof by contradiction. Assume that some Cauchy
sequence is unbounded. Then, there does not exist c > 0 such that |x(n)| ≤ for
all n ≥ 1. Therefore, lim

n→∞
x(n) =∞; the sequence diverges. If this is true then

|x(n + p) − x(n)| cannot be less than some arbitrary ε since x(n + p) can be
infinitely large. This means that the initial assumption that x(n) is a Cauchy
sequence is violated and therefore a Cauchy sequence must be bounded. Here,
I provide two proofs related to Cauchy sequences.

Exercise: Prove that the sequence x(1) = 1, x(n) = x(n− 1) + 1
1+n is not a

Cauchy sequence.

For this exercise, we are proving that there exists an ε > 0 such that |x(n+p)−
x(n)| ≥ ε for all N ∈ N, n > N, p ≥ 1.

1. We know that x(n) is the harmonic series, so we can write |x(n + p) −
x(n)| =

∑n+p
k=1

1
n −

∑n
k=1

1
n =

∑n+p
k=n+1

1
n

2. We know n > 1, so if ε = 1, then |x(n + p) − x(n)| ≥ ε because the first
term of the series is equal to 1.

3. Therefore there exists an ε > 0 such that |x(n + p) − x(n)| ≥ ε for all
N ∈ N.

Thus x(n) is not a Cauchy sequence.

Exercise: Prove that if x is a convergent sequence, then it is a Cauchy
sequence.

1. If x converges then limn→∞ x(n) = L.

2. If so, then x(n+ p) < L

3. Therefore ε(n) = |x(n+ p)− x(n)| < |L− x(n)|

4. This means that |x(n+ p)− x(n)| < |L− x(n) < ε

5. However limn→∞ x(n) = L, so we can take any N such that |L−x(n)| < ε.

Therefore x(n) is a Cauchy sequence.

10 Sequences of Functions

This week we discussed how a sequence of functions can converge to another
function. For example, through a numerical investigation, we demonstrated that

f1(x) = x, fn(x) = fn−1(x) + (−1)n−1 x2n−1

(2n−1)! appears to converge to the sine

function as n gets very large. There are two ways that a sequence of functions
can converge: uniform convergence and pointwise convergence.
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In pointwise convergence, f(x) = lim
n→∞

fn(x) implies that fn defined on the real

numbers converges to f on a sub-interval in the real numbers.

Uniform convergence is similar, but it involves looking at all values of x. In
uniform convergence, N depends only on ε, not on x like it can in pointwise
convergence. If a sequence converges uniformly, it also converges pointwise.

A sequence fn(x) converges uniformly to f if ∀ε > 0,∃N ∈ N, |fn(x)− f(x)| <
ε,∀x ∈ S.

The next exercise provides an example of a potential problem that can be ex-
plored using this concept: the pointwise convergence of the Taylor series for
sinx (or any trigonometric function).

Exercise: Prove pointwise convergence of the sequence f1(x) = x,

fn(x) = fn−1(x) + (−1)n−1 x2n−1

(2n−1)! .

To prove pointwise convergence, we must prove that lim
n→∞

fn(x) = sinx.

To do this, we prove that ∀ε > 0,∃N ∈ N > 0 such that |fn(x)−sinx| < ε,∀n ≥
N .

If we let |ε(n)| = |fn(x)− sinx| then |ε(n+ 1)| = |ε(n) + (−1)n x2n+1

(2n+1)! |.

After further investigation, I found that the solution to this exercise was consid-
erably out of my mathematical wheelhouse, considering it requires some more
mathematical machinery that has not yet been covered in this course yet. Al-
though I haven’t yet found a proper solution to this exercise, there are variety of
ways that I can naively theorize about potential solutions. We know that each
iteration seeks to correct the error from the previous. However, if x is too large
compared to n, the iteration will overcorrect. At a certain point, overcorrec-
tion will not occur and the each iteration of the sequence will yield smaller and

smaller error. In this case we want |ε(n)| < | x
2n+1

(2n+1)! | < |2ε(n)|. Unfortunately,

in this case we do not know the previous error.

11 Defining the Real Numbers Using Dedekind
Cuts

There are many ways to construct the set of real numbers R, but one particularly
simple method is using Dedekind cuts. In order to prove a more intuitive way
to understand real numbers, Richard Dedekind defined the numbers in R by
the way in which they split the set of rational numbers into disjoint sets. A
number r ∈ R can split Q into two sets: L : (ab ) < r and (ab ) > r. Thus, a real
number is simply defined as the set of rational numbers less than itself; aka, L.
Here, we know that L is non-empty, bounded above (by r) and has no maximum
element, since the rationals are infinite. Furthermore, if a

b ∈ L and 0 < c
d <

a
b

then c
d ∈ L.

27



11.1 Addition

We can define the addition of two real numbers L1 and L2 as the element-wise
summation of the two sets.

Exercise: Demonstrate that if L1 and L2 are lower cuts, then so is L1 + L2.

Assume that addition of the real numbers is, as defined above, the element-wise
summation of the two sets representing the two real numbers being added.

Let p be the real number represented by the set L1, and likewise for some q and
L2. Then, if r1 = a

b ∈ L1 and r1 = c
d ∈ L2 then a

b + c
d = ad+bc

bd and since a
b < p

and c
d < q, we know that ad+bc

bd < p+ q for any a, b, c, d ∈ Z. Therefore, L1 +L2

is a lower cut.

We can also demonstrate the typical properties of addition that make the set of
real numbers a field. One example is shown below.

Exercise: Demonstrate that L1 + L2 = L2 + L2.

L1 + L2 is represented by the element-wise addition of the two sets. We know
that addition on the set of real numbers is commutative. Therefore, for any
element in L1 + L2, the corresponding element of L2 + L1 is the same. Since
the sets have the same elements, this means that L1 + L2 = L1 + L2.

We can also extend the same argument to demonstrate other properties of ad-
dition such as commutativity with relative ease.

11.2 Multiplication

Multiplication of two real numbers can be defined similarly; that is, L1 ∗ L2 is
the element-wise product of each element in the two sets.

Exercise: Demonstrate that if L1 and L2 are lower cuts, then so is L1 ∗ L2.

Assume that multiplication of the real numbers is, as defined above, the element-
wise product of the two sets representing the two real numbers being multiplied.

Let p be the real number represented by the set L1, and likewise for some q and
L2. Then, if r1 = a

b ∈ L1 and r1 = c
d ∈ L2 then a

b ∗
c
d = ac

bd and since a
b < p

and c
d < q, we know that ac

bd < p ∗ q for any a, b, c, d ∈ Z. Therefore, L1 ∗ L2 is
a lower cut.

We can also demonstrate the typical properties of multiplication that make the
set of real numbers a field. One example is shown below:

Exercise: Demonstrate that L1 ∗ (L2 + L3) = L1 ∗ L2 + L1 ∗ L3.

The real number addition and multiplication is performed via element-wise op-
erations on the rational numbers contained within the corresponding sets.

For elements a
b ∈ L1,

c
d ∈ L2,

e
f ∈ L1 we observe that a

b ∗ ( cd + e
f ) = acf+ade

bdf

while a
b ∗

c
d + a

b ∗
e
f = ac

bd + ae
bf = acbf+abde

b2df = acf+ade
bdf . This indicates a

b ∗
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( cd + e
f ) = a

b ∗
c
d + a

b ∗
e
f . Since this is true for all elements of L1, L2, L3,

L1 ∗ (L2 + L3) = L1 ∗ L2 + L1 ∗ L3.

11.3 Ordering

The order of real numbers can be defined through the subset operator. The real
numbers represented by the sets L1 and L2 can be ordered like so: L1 ≤ L2 if
L1 ⊆ L2.

Exercise: Demonstrate that if L1 and L2 are lower cuts, then either L1 ≤ L2

or L2 ≤ L1.

Let p be the real number represented by L1, and likewise for q and L2. If
L1, L2 ∈ R, then these sets are the sets of all real numbers such that a

b < p and
c
d < q. Thus, L1 is the set of all elements a

b < p and L2 is the set of all elements
c
d < q. If p = q, then L1 = L2; the sets have the same elements. Otherwise,
the sets will have unequal numbers of elements In this case, either L1 ⊂ L2 or
L2 ⊂ L1. Without loss of generality, if L1 ⊂ L2, then L1 ∩ L2 = { cd ∈ L2 : cd >
p}, since L2 contains elements greater than p, q > p and L2 > L1.

11.4 Completeness

A subset S ⊆ R+ is bounded above if ∃L1 such that L ≤ L1∀L ∈ S, making
L1 an upper bound for S. The upper bound that is less than all other upper
bounds for S is known as the supremum, or supS.

Exercise: Prove that if S ⊆ R+ has a least upper bound then the least upper
bound is unique.

Proceed with a proof by contradiction: Assume that S has two unique least
upper bounds, supS1 and supS2. Then, supS1 6= supS2 since if they are equal,
this contradicts the initial assumption of uniqueness.

If supS1 6= supS2 then supS1 > supS2 or supS1 < supS2. Both supS1 >
supS2 and supS1 < supS2 violate the definition that supS is the least upper
bound of S, since there is an upper bound that is less than the assumed supre-
mum, making either supS1 or supS2 not the least upper bound. Therefore, the
least upper bound must be unique.

Exercise: Prove that if S ⊆ R+ is bounded then supS exists.

Proceed with a proof by contradiction: assume that S is bounded but there
is no supS. If supS does not exist then either S is unbounded (violating the
initial assumption) or the set of all upper bounds of S has no minimum.

Even if the latter is the case, then there is no upper bound to S. This is be-
cause, for any feasible bound that one might take, there is always a bound
that is smaller than that, since supS does not exist and there is no least upper
bound. This requires S to not have an upper bound, which contradicts the
initial assumption.
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11.5 Computability

By one definition, a real number is considered ”computable” if we can define
a Boolean function B that meets several criteria. First, ∃r ∈ Q+ for which
B(r) = 1 and another such ∃r ∈ Q+ for which B(r) = 0. Furthermore, if
B(r) = 1, then ∃s > r with B(s) = 1 and if B(r) = 1 and B(s) = 0 then r < s.
If these criteria are met then B is a lower cut function for r

Exercise: Show that if B : Q+ → {0, 1} is a lower cut function, then
L := {r ∈ Q+ : B(r) = 1} is a lower cut.

1. If B is a lower cut function, then there exists r ∈ Q+ such that B(r) = 1.
Therefore, it is known that L must be non-empty.

2. Furthermore, if B(r) = 1 and B(s) = 0 then r < s. Because the rational
numbers are ordered, for rational numbers a, b, c, if a < b and b < c then
a < c. Therefore, all values mapped to 0 by B must be greater than all
values mapped to 1 by B. Thus, B maps all values r less than some real
number to a value of 1. In more mathematical terms, ∀r ∈ L,∃s /∈ L > r.
This means that L is bounded above, and that if r1 ∈ L and r2 < r1,
r2 ∈ L.

3. Finally, we know that ∀r such that B(r) = 1, ∃s > r with B(s) = 1. This
indicates that L has no maximum element, since if it did, there would not
exist s > r with B(s) = 1 for the maximum element.

Therefore, L has all of the criteria of a lower cut.
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