Cauchy Sequences and Real Numbers

Sal Balkus

October 2020

1 Cauchy Sequences

A Cauchy sequence is a sequence $x: \mathbb{N} \rightarrow \mathbb{Q}$ such that $\forall \epsilon>0 \exists N \in \mathbb{N}$ such that $\mid x(n+p)-x(n)<\epsilon \forall n>N$ and $\forall p \geq 1$ i In layman's terms, the difference between a term and another term that comes after the first is arbitrarily small if the sequence goes out far enough.

One of the most useful aspects of a Cauchy sequence is that it can be used to define the set of all real numbers \mathbb{R}. A real number is simply the limit of a Cauchy sequence of rational numbers; a Cauchy sequence that converges to some limit does not necessarily have any other way to describe the number to which it converges, so we call this number "real."

Exercise: Prove that the sequence $x(1)=1, x(n)=1+\frac{1}{1 x(n)}$ is a Cauchy sequence.

First, we will prove the case for $n+1$. Define $\epsilon(n)=\mid x(n+1)-x(n)=$ $\left|1+\frac{1}{1+x(n)}\right|=\left\lvert\, \frac{2-x(n)^{2}}{x(n)+1}\right.$ through algebraic manipulation. Then it is known that

$$
\begin{array}{r}
\epsilon(n+1)=\left|1+\frac{1}{1+x(n+1)}-x(n+1)\right| \\
=\left\lvert\, 1+\frac{1}{1+1}+\begin{array}{r}
\left.+\frac{1}{1+x(n)}-1-\frac{1}{1+x(n)} \right\rvert\, \\
\\
=\left\lvert\, \frac{1+x(n)}{3+2 x(n)}-\frac{1}{1+x(n)}\right. \\
\\
=\left|\frac{x(n)^{2}-2}{(3+2 x(n))(1+x(n))}\right| \\
\\
=\left|\frac{2-x(n)^{2}}{x(n+1)}\right|\left|\frac{1}{3+2 x(n)}\right|
\end{array} .\right.
\end{array}
$$

We know that $x(1)=1$ and the sequence is increasing therefore $\frac{1}{3+2 x(n)}<\frac{1}{5}$. As such, $\epsilon(n+1)<\frac{\epsilon(n)}{5}=\frac{1}{5^{n}}$

Then, we can use the telescopic sum technique to write

$$
\begin{aligned}
& |x(n+p)-x(n)|=|x(n+p)-x(n+p-1)|+|x(n+p-1)-x(n+p-2)|+ \\
& \ldots+|x(n+1)-x(n)| \\
& <\frac{1}{5^{n+p}}+\frac{1}{5^{n+p-1}}+\ldots+\frac{1}{5^{n}} \\
& =\frac{1}{5^{n}}\left(\frac{1}{5^{p}+\frac{1}{5^{p-1}}+\ldots+1}\right) \\
& \quad<\frac{1}{5^{n}} * 5=\frac{1}{5^{n-1}}
\end{aligned}
$$

So, given $\epsilon>0$ we take N large enough such that $\frac{1}{5^{N-1}}<\epsilon$ and this ensures that $|x(n+p)-x(n)|<\epsilon$ for all $n>N$ and $p \geq 1$, making x a Cauchy sequence.

Going further, we can also demonstrate that if a sequence is a Cauchy sequence, then that sequence is bounded, meaning that there exists $c>0$ such that $|x(n)| \geq C$ for all $n \geq 1$.

One way to do this is a proof by contradiction. Assume that some Cauchy sequence is unbounded. Then, there does not exist $c>0$ such that $|x(n)| \leq$ for all $n \geq 1$. Therefore, $\lim _{n \rightarrow \infty} x(n)=\infty$; the sequence diverges. If this is true then $|x(n+p)-x(n)|$ cannot be less than some arbitrary ϵ since $x(n+p)$ can be infinitely large. This means that the initial assumption that $x(n)$ is a Cauchy sequence is violated and therefore a Cauchy sequence must be bounded.

