Constructing the Real Numbers via Dedekind Cuts

Sal Balkus

November 2020

1 Dedekind Cuts

There are many ways to construct the set of real numbers \mathbb{R}, but one particularly simple method is using Dedekind cuts. In order to prove a more intuitive way to understand real numbers, Richard Dedekind defined the numbers in \mathbb{R} by the way in which they split the set of rational numbers into disjoint sets. A number $r \in \mathbb{R}$ can split \mathbb{Q} into two sets: $L:\left(\frac{a}{b}\right)<r$ and $\left(\frac{a}{b}>r\right.$. Thus, a real number is simply defined as the set of rational numbers less than itself; aka, L. Here, we know that L is non-empty, bounded above (by r) and has no maximum element, since the rationals are infinite. Furthermore, if $\frac{a}{b} \in L$ and $0<\frac{c}{d}<\frac{a}{b}$ then $\frac{c}{d} \in L$.

2 Addition

We can define the additional of two real numbers L_{1} and L_{2} as the element-wise summation of the two sets.

Exercise: Demonstrate that if L_{1} and L_{2} are lower cuts, then so is $L_{1}+L_{2}$.
Assume that addition of the real numbers is, as defined above, the element-wise summation of the two sets representing the two real numbers being added. Let p be the real number represented by the set L_{1}, and likewise for some q and L_{2}. Then, if $r_{1}=\frac{a}{b} \in L_{1}$ and $r_{1}=\frac{c}{d} \in L_{2}$ then $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ and since $\frac{a}{b}<p$ and $\frac{c}{d}<q$, we know that $\frac{a d+b c}{b d}<p+q$ for any $a, b, c, d \in \mathbb{Z}$. Therefore, $L_{1}+L_{2}$ is a lower cut.

We can also demonstrate the typical properties of addition that make the set of real numbers a field. One example is shown below:

Exercise: Demonstrate that $L_{1}+L_{2}=L_{2}+L_{2}$.
$L_{1}+L_{2}$ is represented by the element-wise addition of the two sets. We know that addition on the set of real numbers is commutative. Therefore, for any
element in $L_{1}+L_{2}$, the corresponding element of $L_{2}+L_{1}$ is the same. Since the sets have the same elements, this means that $L_{1}+L_{2}=L_{1}+L_{2}$.

We can also extend the same argument to demonstrate other properties of addition, such as commutativity.

3 Multiplication

Multiplication of two real numbers can be defined similarly; that is, $L_{1} * L_{2}$ is the element-wise product of each element in the two sets.
Exercise: Demonstrate that if L_{1} and L_{2} are lower cuts, then so is $L_{1} * L_{2}$.
Assume that multiplication of the real numbers is, as defined above, the elementwise product of the two sets representing the two real numbers being multiplied. Let p be the real number represented by the set L_{1}, and likewise for some q and L_{2}. Then, if $r_{1}=\frac{a}{b} \in L_{1}$ and $r_{1}=\frac{c}{d} \in L_{2}$ then $\frac{a}{b} * \frac{c}{d}=\frac{a c}{b d}$ and since $\frac{a}{b}<p$ and $\frac{c}{d}<q$, we know that $\frac{a c}{b d}<p * q$ for any $a, b, c, d \in \mathbb{Z}$. Therefore, $L_{1} * L_{2}$ is a lower cut.

We can also demonstrate the typical properties of multiplication that make the set of real numbers a field. One example is shown below:
Exercise: Demonstrate that $L_{1} *\left(L_{2}+L_{3}\right)=L_{1} * L_{2}+L_{1} * L_{3}$.
The real number addition and multiplication is performed via element-wise operations on the rational numbers contained within the corresponding sets. For elements $\frac{a}{b} \in L_{1}, \frac{c}{d} \in L_{2}, \frac{e}{f} \in L_{1}$ we observe that $\frac{a}{b} *\left(\frac{c}{d}+\frac{e}{f}\right)=\frac{a c f+a d e}{b d f}$ while $\frac{a}{b} * \frac{c}{d}+\frac{a}{b} * \frac{e}{f}=\frac{a c}{b d}+\frac{a e}{b f}=\frac{a c b f+a b d e}{b^{2} d f}=\frac{a c f+a d e}{b d f}$. This indicates $\frac{a}{b} *\left(\frac{c}{d}+\frac{e}{f}\right)=$ $\frac{a}{b} * \frac{c}{d}+\frac{a}{b} * \frac{e}{f}$. Since this is true for all elements of $L_{1}, L_{2}, L_{3}, L_{1} *\left(L_{2}+L_{3}\right)=$ $L_{1} * L_{2}+L_{1} * L_{3}$.

4 Ordering

The order of real numbers can be defined through the subset operator. The real numbers represented by the sets L_{1} and L_{2} can be ordered like so: $L_{1} \leq L_{2}$ if $L_{1} \subseteq L_{2}$.

Exercise: Demonstrate that if L_{1} and L_{2} are lower cuts, then either $L_{1} \leq L_{2}$ or $L_{2} \leq L_{1}$.

Let p be the real number represented by L_{1}, and likewise for q and L_{2}. If $L_{1}, L_{2} \in \mathbb{R}$, then these sets are the sets of all real numbers such that $\frac{a}{b}<p$ and $\frac{c}{d}<q$. Thus, L_{1} is the set of all elements $\frac{a}{b}<p$ and L_{2} is the set of all elements $\frac{c}{d}<q$. If $p=q$, then $L_{1}=L_{2}$; the sets have the same elements. Otherwise, the sets will have unequal numbers of elements In this case, either $L_{1} \subset L_{2}$ or $L_{2} \subset L_{1}$. Without loss of generality, if $L_{1} \subset L_{2}$, then $L_{1} \cap L_{2}=\left\{\frac{c}{d} \in L_{2}: \frac{c}{d}>\right.$ $p\}$. Since L_{2} contains elements greater than $\mathrm{p}, q>p$ and $L_{2}>L_{1}$.

5 Completeness

A subset $S \subseteq \mathbb{R}^{+}$is bounded above if $\exists L_{1}$ such that $L \leq L_{1} \forall L \in S$, making L_{1} an upper bound for S. The upper bound that is less than all other upper bounds for S is known as the supremum, or sup S.
Exercise: Prove that if $S \subseteq \mathbb{R}^{+}$has a least upper bound then the least upper bound is unique.

Proceed with a proof by contradiction: Assume that S has two unique least upper bounds, $\sup S_{1}$ and $\sup S_{2}$. Then, $\sup S_{1} \neq \sup S_{2}$ since if they are equal, this contradicts the initial assumption of uniqueness. If $\sup S_{1} \neq \sup S_{2}$ then $\sup S_{1}>\sup S_{2}$ or $\sup S_{1}<\sup S_{2}$. Both $\sup S_{1}>\sup S_{2}$ and $\sup S_{1}<\sup S_{2}$ violate the definition that $\sup S$ is the least upper bound of S, since there is an upper bound that is less than the assumed supremum, making either $\sup S_{1}$ or $\sup S_{2}$ not the least upper bound. Therefore, the least upper bound must be unique.
Exercise: Prove that if $S \subseteq \mathbb{R}^{+}$is bounded then $\sup S$ exists.
Proceed with a proof by contradiction: assume that S is bounded but there is no $\sup S$. If $\sup S$ does not exist then either S is unbounded (violating the initial assumption) or the set of all upper bounds of S has no minimum. Even if the latter is the case, then there is no upper bound to S . This is because, for any feasible bound that one might take, there is always a bound that is smaller than that, since $\sup S$ does not exist and there is no least upper bound. This requires S to not have an upper bound, which contradicts the initial assumption.

