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1 Dedekind Cuts

There are many ways to construct the set of real numbers R, but one particularly
simple method is using Dedekind cuts. In order to prove a more intuitive way
to understand real numbers, Richard Dedekind defined the numbers in R by
the way in which they split the set of rational numbers into disjoint sets. A
number r ∈ R can split Q into two sets: L : (a

b ) < r and (a
b > r. Thus, a real

number is simply defined as the set of rational numbers less than itself; aka, L.
Here, we know that L is non-empty, bounded above (by r) and has no maximum
element, since the rationals are infinite. Furthermore, if a

b ∈ L and 0 < c
d < a

b
then c

d ∈ L.

2 Addition

We can define the additional of two real numbers L1 and L2 as the element-wise
summation of the two sets.

Exercise: Demonstrate that if L1 and L2 are lower cuts, then so is L1 + L2.

Assume that addition of the real numbers is, as defined above, the element-wise
summation of the two sets representing the two real numbers being added. Let
p be the real number represented by the set L1, and likewise for some q and L2.
Then, if r1 = a

b ∈ L1 and r1 = c
d ∈ L2 then a

b + c
d = ad+bc

bd and since a
b < p and

c
d < q, we know that ad+bc

bd < p + q for any a, b, c, d ∈ Z. Therefore, L1 + L2 is
a lower cut.

We can also demonstrate the typical properties of addition that make the set of
real numbers a field. One example is shown below:

Exercise: Demonstrate that L1 + L2 = L2 + L2.

L1 + L2 is represented by the element-wise addition of the two sets. We know
that addition on the set of real numbers is commutative. Therefore, for any
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element in L1 + L2, the corresponding element of L2 + L1 is the same. Since
the sets have the same elements, this means that L1 + L2 = L1 + L2.

We can also extend the same argument to demonstrate other properties of ad-
dition, such as commutativity.

3 Multiplication

Multiplication of two real numbers can be defined similarly; that is, L1 ∗ L2 is
the element-wise product of each element in the two sets.

Exercise: Demonstrate that if L1 and L2 are lower cuts, then so is L1 ∗ L2.

Assume that multiplication of the real numbers is, as defined above, the element-
wise product of the two sets representing the two real numbers being multiplied.
Let p be the real number represented by the set L1, and likewise for some q and
L2. Then, if r1 = a

b ∈ L1 and r1 = c
d ∈ L2 then a

b ∗
c
d = ac

bd and since a
b < p

and c
d < q, we know that ac

bd < p ∗ q for any a, b, c, d ∈ Z. Therefore, L1 ∗ L2 is
a lower cut.

We can also demonstrate the typical properties of multiplication that make the
set of real numbers a field. One example is shown below:

Exercise: Demonstrate that L1 ∗ (L2 + L3) = L1 ∗ L2 + L1 ∗ L3.

The real number addition and multiplication is performed via element-wise op-
erations on the rational numbers contained within the corresponding sets. For
elements a

b ∈ L1,
c
d ∈ L2,

e
f ∈ L1 we observe that a

b ∗ ( c
d + e

f ) = acf+ade
bdf while

a
b ∗

c
d + a

b ∗
e
f = ac

bd + ae
bf = acbf+abde

b2df = acf+ade
bdf . This indicates a

b ∗ ( c
d + e

f ) =
a
b ∗

c
d + a

b ∗
e
f . Since this is true for all elements of L1, L2, L3, L1 ∗ (L2 + L3) =

L1 ∗ L2 + L1 ∗ L3.

4 Ordering

The order of real numbers can be defined through the subset operator. The real
numbers represented by the sets L1 and L2 can be ordered like so: L1 ≤ L2 if
L1 ⊆ L2.

Exercise: Demonstrate that if L1 and L2 are lower cuts, then either L1 ≤ L2

or L2 ≤ L1.

Let p be the real number represented by L1, and likewise for q and L2. If
L1, L2 ∈ R, then these sets are the sets of all real numbers such that a

b < p and
c
d < q. Thus, L1 is the set of all elements a

b < p and L2 is the set of all elements
c
d < q. If p = q, then L1 = L2; the sets have the same elements. Otherwise,
the sets will have unequal numbers of elements In this case, either L1 ⊂ L2 or
L2 ⊂ L1. Without loss of generality, if L1 ⊂ L2, then L1 ∩ L2 = { cd ∈ L2 : c

d >
p}. Since L2 contains elements greater than p, q > p and L2 > L1.
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5 Completeness

A subset S ⊆ R+ is bounded above if ∃L1 such that L ≤ L1∀L ∈ S, making
L1 an upper bound for S. The upper bound that is less than all other upper
bounds for S is known as the supremum, or supS.

Exercise: Prove that if S ⊆ R+ has a least upper bound then the least upper
bound is unique.

Proceed with a proof by contradiction: Assume that S has two unique least
upper bounds, supS1 and supS2. Then, supS1 6= supS2 since if they are equal,
this contradicts the initial assumption of uniqueness. If supS1 6= supS2 then
supS1 > supS2 or supS1 < supS2. Both supS1 > supS2 and supS1 < supS2

violate the definition that supS is the least upper bound of S, since there is an
upper bound that is less than the assumed supremum, making either supS1 or
supS2 not the least upper bound. Therefore, the least upper bound must be
unique.

Exercise: Prove that if S ⊆ R+ is bounded then supS exists.

Proceed with a proof by contradiction: assume that S is bounded but there
is no supS. If supS does not exist then either S is unbounded (violating the
initial assumption) or the set of all upper bounds of S has no minimum. Even if
the latter is the case, then there is no upper bound to S. This is because, for any
feasible bound that one might take, there is always a bound that is smaller than
that, since supS does not exist and there is no least upper bound. This requires
S to not have an upper bound, which contradicts the initial assumption.
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