Sequences of Functions

Sal Balkus

November 2020

1 Sequences of Functions

This week we discussed how a sequence of functions can converge to another function. For example, through a numerical investigation, we demonstrated that $f_{1}(x)=x, f_{n}(x)=f_{n-1}(x)+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}$ appears to converge to the sine function as n gets very large. There are two ways that a sequence of functions can converge: uniform convergence and pointwise convergence.
In pointwise convergence, $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ implies that f_{n} defined on the real numbers converges to f on a sub-interval in the real numbers.

Uniform convergence is similar, but it involves looking at all values of x. In uniform convergence, N depends only on ϵ, not on x like it can in pointwise convergence. If a sequence converges uniformly, it also converges pointwise.
A sequence $f_{n}(x)$ converges uniformly to f if $\forall \epsilon>0, \exists N \in \mathbb{N},\left|f_{n}(x)-f(x)\right|<$ $\epsilon, \forall x \in S$.
In this exercise, I attempt to prove pointwise convergence of the Taylor series for $\sin x$

Exercise: Prove pointwise convergence of the sequence $f_{1}(x)=x$, $f_{n}(x)=f_{n-1}(x)+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}$.
To prove pointwise convergence, we must prove that $\lim _{n \rightarrow \infty} f_{n}(x)=\sin x$.
To do this, we prove that $\forall \epsilon>0, \exists N \in \mathbb{N}>0$ such that $\left|f_{n}(x)-\sin x\right|<\epsilon, \forall n \geq$ N.
If we let $|\epsilon(n)|=\left|f_{n}(x)-\sin x\right|$ then $|\epsilon(n+1)|=\left|\epsilon(n)+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}\right|$.
Although I haven't yet found a proper solution to this exercise, there are variety of ways to go from here. We know that each iteration seeks to correct the error from the previous. However, if x is too large compared to n , the iteration will overcorrect. At a certain point, overcorrection will not occur and the each iteration of the sequence will yield smaller and smaller error. In this case we
want $|\epsilon(n)|<\left|\frac{x^{2 n+1}}{(2 n+1)!}\right|<|2 \epsilon(n)|$. However, in this case we do not know the previous error.

