Cauchy Sequences and Real Numbers

Sal Balkus

October 2020

1 Cauchy Sequences

A Cauchy sequence is a sequence $x : \mathbb{N} \to \mathbb{Q}$ such that $\forall \epsilon > 0 \exists N \in \mathbb{N}$ such that $|x(n+p) - x(n) < \epsilon \forall n > N$ and $\forall p \ge 1$; In layman's terms, the difference between a term and another term that comes after the first is arbitrarily small if the sequence goes out far enough.

One of the most useful aspects of a Cauchy sequence is that it can be used to define the set of all real numbers \mathbb{R} . A real number is simply the limit of a Cauchy sequence of rational numbers; a Cauchy sequence that converges to some limit does not necessarily have any other way to describe the number to which it converges, so we call this number "real."

Exercise: Prove that the sequence $x(1) = 1, x(n) = 1 + \frac{1}{1+x(n)}$ is a Cauchy sequence.

First, we will prove the case for n + 1. Define $\epsilon(n) = |x(n+1) - x(n)| = |1 + \frac{1}{1+x(n)}| = |\frac{2-x(n)^2}{x(n)+1}$ through algebraic manipulation. Then it is known that

$$\begin{aligned} \epsilon(n+1) &= |1 + \frac{1}{1+x(n+1)} - x(n+1)| \\ &= |1 + \frac{1}{1+1 + \frac{1}{1+x(n)}} - 1 - \frac{1}{1+x(n)}| \\ &= |\frac{1+x(n)}{3+2x(n)} - \frac{1}{1+x(n)}| \\ &= |\frac{x(n)^2 - 2}{(3+2x(n))(1+x(n))}| \\ &= |\frac{2-x(n)^2}{x(n+1)}||\frac{1}{3+2x(n)}| \end{aligned}$$

We know that x(1) = 1 and the sequence is increasing therefore $\frac{1}{3+2x(n)} < \frac{1}{5}$. As such, $\epsilon(n+1) < \frac{\epsilon(n)}{5} = \frac{1}{5^n}$ Then, we can use the telescopic sum technique to write

$$\begin{split} |x(n+p) - x(n)| &= |x(n+p) - x(n+p-1)| + |x(n+p-1) - x(n+p-2)| + \\ \dots + |x(n+1) - x(n)| \\ &< \frac{1}{5^{n+p}} + \frac{1}{5^{n+p-1}} + \dots + \frac{1}{5^n} \\ &= \frac{1}{5^n} (\frac{1}{5^p + \frac{1}{5^{p-1}} + \dots + 1}) \\ &< \frac{1}{5^n} * 5 = \frac{1}{5^{n-1}} \end{split}$$

So, given $\epsilon > 0$ we take N large enough such that $\frac{1}{5^{N-1}} < \epsilon$ and this ensures that $|x(n+p)-x(n)| < \epsilon$ for all n > N and $p \ge 1$, making x a Cauchy sequence.

Going further, we can also demonstrate that if a sequence is a Cauchy sequence, then that sequence is bounded, meaning that there exists c > 0 such that $|x(n)| \ge C$ for all $n \ge 1$.

One way to do this is a proof by contradiction. Assume that some Cauchy sequence is unbounded. Then, there does not exist c > 0 such that $|x(n)| \le$ for all $n \ge 1$. Therefore, $\lim_{n \to \infty} x(n) = \infty$; the sequence diverges. If this is true then |x(n+p) - x(n)| cannot be less than some arbitrary ϵ since x(n+p) can be infinitely large. This means that the initial assumption that x(n) is a Cauchy sequence is violated and therefore a Cauchy sequence must be bounded.

Exercise: Prove that the sequence x(1) = 1, $x(n) = x(n-1) + \frac{1}{1+n}$ is not a Cauchy sequence.

For this exercise, we are proving that there exists an $\epsilon > 0$ such that $|x(n+p) - x(n)| \ge \epsilon$ for all $N \in \mathbb{N}, n > N, p \ge 1$.

- 1. We know that x(n) is the harmonic series, so we can write $|x(n+p) x(n)| = \sum_{k=1}^{n+p} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{n} = \sum_{k=n+1}^{n+p} \frac{1}{n}$
- 2. We know n > 1, so if $\epsilon = 1$, then $|x(n+p) x(n)| \ge \epsilon$ because the first term of the series is equal to 1.
- 3. Therefore there exists an $\epsilon > 0$ such that $|x(n+p) x(n)| \ge \epsilon$ for all $N \in \mathbb{N}$.

Thus x(n) is not a Cauchy sequence.

Exercise: Prove that if x is a convergent sequence, then it is a Cauchy sequence.

- 1. If x converges then $\lim_{n\to\infty} x(n) = L$.
- 2. If so, then x(n+p) < L
- 3. Therefore $\epsilon(n) = |x(n+p) x(n)| < |L x(n)|$
- 4. This means that $|x(n+p) x(n)| < |L x(n) < \epsilon$

5. However $\lim_{n\to\infty} x(n) = L$, so we can take any N such that $|L-x(n)| < \epsilon$. Therefore x(n) is a Cauchy sequence.